Redeconve manual

#Library(Redeconve)

Main function

This part describes how to use the main function deconvoluting to perform single-cell deconvolution.

Useage
The usage of deconvoluting is as follows:

## nums = deconvoluting(ref, st, cellnames=NULL, genemode, gene.list, var_thresh=0.025,
exp_thresh=0.03, hpmode, hp, aver cell, thre=le-10, dopar=T, ncores, realtime=F,
dir=NULL)

It does contains many parameters. Next, | will divide these parameters into several parts by function,
and explain them one by one.

1. Necessary data for deconvolution

ref and st are the core data used for deconvolution. They are required as follows:

o ref, the scRNA-seq data served as reference for deconvolution. It is a Matrix (Or dgcMatrix) of
unprocessed count-level scRNA-seq data. One row represents one gene and one column
represents one cell.

o st, the spatial transcriptomics to be deconvoluted. It is a Matrix (Or dgcMatrix) of unprocessed
spatial transcriptomics, represents raw counts in each spot. One row represents one gene and
one column represents one spot.

2. Mode of gene selection

genemode, gene.list, var_thresh and exp_thresh are about how to deal with genes. genemode determines
the mode of handling genes and gene.1ist, var_thresh, exp_thresh are associated with specific modes.
Redeconve offers 3 alternative modes of dealing with genes:

1. default: Use the intersection of genes in ref and st, without other treatment.

2. customized: Indicating gene list yourself. Parameter gene.1ist is the list of genes you indicated.
Note that only those genes within the intersection of ref and st would be used.

3. filtered: We will use a built-in function gene.filter to screen some genes. This function will first
take the intersection of ref and st, the use two indices, var_thresh and exp_thresh to filter genes.
You can customize these two parameters as well.

© var_thresh considers variance of reference. Genes whose variance across all cells in reference
do not reach that threshold will be filtered out. The default value is 0.025.

© exp_thresh considers expression in spatial transcriptomics. Genes whose average count across
all spots in spatial transcriptomics is less that this value will be filtered out. The default value is



0.003.

3. Mode of determining hyperparameter

The hyperparamter is our key to single-cell resolution (See Methods for details). Here we still offers 3
modes to determine the hyperparameter:

1. default: We will calculate a hyperparameter according to the number of genes and cells in
reference (See Methods for details).

2. customized: Indicating the hyperparameter yourself.

3. autoselection: Redeconve will use a procedure to select the optimal hyperparameter. In this
procedure, a series of hyperparameter will be set in the vicinity of the hyperparameter selected
by mode default, and Redeconve will use these hyperparameters to perform deconvolution
separately, then return the result with the best hyperparameter. You can see Methods for
details about how we determine the best hyperparameter.

o Note thatin this procedure, several rounds of deconvolution will be performed, so it may take a
long time. Under such circumstances, parallel computing will be beneficial.

4. Parallel computing

Sometimes the reference will contain tens of thousands of cells, or the spatial transcriptomics will
contain tens of thousands of spots (e.g. when the data is from Slide-seq), then parallel computing is
useful. Redeconve uses the package “doSNOW" to achieve parallel computing (which means there is a
progress bar). Related parameters are dopar and ncores.

© dopar determines whether to use parallel computing or not.

© ncores indicates the number of cores to be used in parallel computing. It's recommended to
manually set this parameter rather than use the function detectcores to avoid underlying
errors.

' lmportant tips for parallel computing: !

1. Our underlying algorithm makes use of OpenBLAS, which may include parallel computing
inside. Therefore, setting system("export OPENBLAS_NUM_THREADS=1") iS necessary to avoid
underlying errors.

2. An error may be reported when the number of threads is too large : Error in
socketAccept(socket = socket, blocking = TRUE, open = "a+b",: all connections are in use. If
such error occurs, please reduce the number of cores.

5. Writing real-time results

Even with parallel computing, some dataset is still time-consuming. Redeconve is able to write results
into disk in real time at the cost of some running speed. Related parameters are realtime and dir.

© dopar determines whethers to write the results into disk in real time or not.
© dir indicates the directory to write the results.

For real time results, the result of each spot will be write into a separate csv file, whose name is the
barcode of the spot.

6. Other parameters

The left parameters are cellnames, normalize and thre.



© cellnames: Chances are that you may not want to use all cells in reference to run deconvolution.
Then you can indicate which cells will be used by this parameter. If you do not specify this
parameter, all cells will be used.

© normalize: Redeconve can also be used for bulk RNA-seq deconvolution. When doing this,
normalization for reference is not required. When deconvoluting spatial transcriptomics,
normalization is recommended.

o thre: The estimated cell abundance will not be exactly 0. This parameter indicates that the
abundance less than this value will be treated as 0. Generally this value does not need to be
adjusted, and the result will remain the same within a relatively big range of this value.

A demo

Next we will use a demo to give an example of how to use this function.

## lLoad the data
#data(basic)

## check the dimensions of sc and st
#dim(sc)
#dim(st)

## check the number cells in each cell type
#table(annotations[,2])

## deconvolution
# this may take a long time
#res = deconvoluting(sc,st,genemode="filt", hpmode="def",aver cell=25,dopar=T,ncores=8)

© scand st are separately reference and spatial transcriptomics.

o For there are about 20000 genes, genemode is set to "filtered" with the default threshold of
variance and mean expression, which result in #### genes.

© hpmode is set to "default" to improve efficiency.

© dopar is set to TRUE (default value) and ncores is set to 8. You can raise the number of cores to
improve efficiency.

© This dataset is from the ST platform whose spot radius is about 100 \(\mu\)m, so we set
aver_cell as 25.

o For this dataset is not very large, realtime is set to FALSE (default value).

o We want to use all cells in deconvolution, so we do not need to specify cellnames. Also, we do
not need to adjust thre.

Cell-type deconvolution

Like other methods, Redeconve can also perform deconvolution at cell-type level. This part shows
how to do so.

## get reference
#ref = get.ref(sc,annotations)

## deconvolution
#res.ct = deconvoluting(sc,st,genemode="filt", hpmode="auto", dopar=T,ncores=8)



You can see that actually, only one more step is required to convert single-cell expression profile to
that of cell type. The function get.ref will take the average expression of all cells in one cell type as
the profile of that cell type.

For the main function, every thing is the same. Here we set hpmode as "autoselection", for there are
only tens of cell types, then the speed is fast enough for us to run several rounds of deconvolution.

Seurat interface

This package provided two functions to extract information from Seurat object to satisfy Redeconve'’s
input:

## sc
#sclist

extract.seurat.sc(pbmc3k,anno_slot="seurat _annotation")

## st

#stlist = extract.seurat.st(stxBrain,coord_slot="anteriorl")

## just for example

#res = deconvoluting(sclist[["expr"]],stlist[["expr"],genemode="filt", hpmode="auto",dopar=T,ncores=8)

Downstream analysis and visualization

Redeconve offers many built-in functions for downstream analysis and visualization.

gaining interpretability

For we included a normalization procedure, the result of deconvoluting has only relative significance.
Here are some functions related:

1. to.proportion: This function converts the result to proportion, i.e., the sum of cell abundance
per spot is 1. This is convenient for visualization.

#prop = to.proportion(nums)

2. to.absolute.abundance: This function converts the result to absolute cell abundance with some
priori knowledge. Parameter aver.cell is required to estimate the absolute abundance of each
cell state. This value indicates the average number of cells in one spot. Users can determine it
according to the platform of st data. For example, 10x Visium has a spot radius of about 50\
(\mu\)m, so this value for a 10x Visium dataset is about 10.

#ab = to.absolute.abundance(nums,aver.cell=10)

3. sc2type: This function converts single-cell result to cell-type result. Note that this function itself
does not provide interpretability.

#type res = sc2type(res,annotations)



Cell occurrence

The function cell.occur shows the number of cells actually used in deconvolution, and the number of
spots that every used cell occurs.

#cell.occur(res)

Find cells of interest

Redeconve offers a function to plot mean vs sd, and highlighting those outliers. Users can then
explore those cells. Note that this function can only be run after cell.occur, because it needs
occurred.cells as input, which is an output of cell.occur.

#show. cellsofinterest(res, occurred.cells)

Abundance of all or some specific cells

The function spatial.cell.number can plot the abundance of all cells (or cell types) or some cells you
indicate. Here we want to plot the abundance of three T cells, so we set cellnames as the names of
cells we concern.

#Tcells = c("T.cells...NK.cells.8","T.cells...NK.cells.11","T.cells...NK.cells.35")

#spatial.cell.number(res,cellnames=Tcells, coords=coords,name="Tcells.pdf")

The output file, named “Tcells.pdf”, can be found under current directory.

Spatial pie chart

The function spatial.pie can plot the spatial pie chart, showing the proportion of each cell type in
each spatial spot.

# For this is a demo, we use default colors
# This may take some time
#spatial.piechart(res.ctmerge, coords)

Spot pie chart

The function spot.pie can plot the proportion of each cell type within a certain spot.

#spot.pie(res[, "X27x18"], title="X27x18")

Co-localization

Redeconve offers two main functions to explore co-localization. coloc.corr uses the correlation of cell
abundance to infer co-localization, and coloc.network gains a network to visualize co-localization.



# This function merges single cells to cell types

#res.ctmerge = sc2type(res,annotations)
#corr = coloc.corr(res.ctmerge, F,method="pearson")

#celltypes = levels(as.factor(annotations[,2]))
#g = coloc.network(corr,thre=0.4,cell.type=T,annotations=celltypes,ntypes=Length(celltypes))
#plot(g)

Spatial expression visualization

The function spatial.gene can visualize gene expression across spatial coordinates. This can help
validate the distribution of some cells/cell states.

#gene.list = c("CD3D", "CD3E", "CD3G")
#spatial.gene(st, coords,gene. list)

Spatial expression profile imputation and reference correction

In spatial transcriptomics, drop-out is very severe. Meanwhile, the cell state of cells in spatial spot
would not be exactly the same with that in reference. Here Redeconve offers a function that solves
both problems. The function profile.correction can do impitation as well as profile correction for a
single spot.

#ests = profile_correction(res[, "X27x18"],st[, "X27x18" ], sc,ncores=8)

This is another quadratic programming problem: the goal is to let the corrected spatial expression
higher than the observed (imputation). The return value is the “real” cell states in that spot after
imputation.

We can use the function profile_comparison to see the difference between reference and corrected
expression profile:

#profile_comparison(sc,ests)



